Rhinovirus infection induces extracellular matrix protein deposition in asthmatic and nonasthmatic airway smooth muscle cells.
نویسندگان
چکیده
Airway remodeling, which includes increases in the extracellular matrix (ECM), is a characteristic feature of asthma and is correlated to disease severity. Rhinovirus (RV) infections are associated with increased risk of asthma development in young children and are the most common cause of asthma exacerbations. We examined whether viral infections can increase ECM deposition and whether this increased ECM modulates cell proliferation and migration. RV infection of nonasthmatic airway smooth muscle (ASM) cells significantly increased the deposition of fibronectin (40% increase, n = 12) and perlecan (80% increase, n = 14), while infection of asthmatic ASM cells significantly increased fibronectin (75% increase, n = 9) and collagen IV (15% increase, n = 9). We then treated the ASM cells with the Toll-like receptor (TLR) agonists polyinosinic:polycytidylic acid, imiquimod, and pure RV RNA and were able to show that the mechanism through which RV induced ECM deposition was via the activation of TLR3 and TLR7/8. Finally, we assessed whether the virus-induced ECM was bioactive by measuring the amount of migration and proliferation of virus-naive cells that seeded onto the ECM. Basically, ECM from asthmatic ASM cells induced twofold greater migration of virus-naive ASM cells than ECM from nonasthmatic ASM cells, and these rates of migration were further increased on RV-modulated ECM. Increased migration on the RV-modulated ECM was not due to increased cell proliferation, as RV-modulated ECM decreased the proliferation of virus-naive cells. Our results suggest that viruses may contribute to airway remodeling through increased ECM deposition, which in turn may contribute to increased ASM mass via increased cell migration.
منابع مشابه
Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle.
Transforming growth factor (TGF)-beta and connective tissue growth factor may be implicated in extracellular matrix protein deposition in asthma. We have recently reported that TGF-beta increased connective tissue growth factor expression in airway smooth muscle cells isolated from patients with asthma. In this study, we examined fibronectin and collagen production and signal transduction pathw...
متن کاملThe production of extracellular matrix proteins by human passively sensitized airway smooth-muscle cells in culture: the effect of beclomethasone.
Airway remodeling is a key feature of persistent asthma. Part of the remodeling process involves the laying down of extracellular matrix (ECM) proteins within the airways. In this study we compared the production of ECM proteins by human airway smooth-muscle (ASM) cells in culture after exposure to 10% serum from an asthmatic individual or 10% serum from a nonasthmatic individual with or withou...
متن کاملInduction of human airway epithelial to mesenchymal transition upon rhinovirus infection
Background Structural changes of the airway, collectively referred to as airway remodeling are believed to be the underlying cause of the airway hyperresponsiveness that is characteristic of asthma. Airway remodeling is characterized by thickening of the subepithelial membrane, goblet cell hyperplasia, angiogenesis, increased smooth muscle mass, and epithelial fragility. Thickening of the subep...
متن کاملPAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasthmatic airway smooth muscle cells.
The protease-activated receptor-2 (PAR-2) is present on human airway smooth muscle (ASM) cells and can be activated by mast cell tryptase, trypsin, or an activating peptide (AP). Trypsin induced significant increases in PGE2 release from human ASM cells after 6 and 24 h and also induced cyclooxygenase (COX)-2 mRNA expression and COX-2 protein. Tryptase and the PAR-2 AP did not alter PGE2 releas...
متن کاملCombined Beta-Agonists and Corticosteroids Do Not Inhibit Extracellular Matrix Protein Production In Vitro
Background. Persistent asthma is characterized by airway remodeling. Whereas we have previously shown that neither β(2)-agonists nor corticosteroids inhibit extracellular matrix (ECM) protein release from airway smooth muscle (ASM) cells, the effect of their combination is unknown and this forms the rationale for the present study. Methods. ASM cells from people with and without asthma were sti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 300 6 شماره
صفحات -
تاریخ انتشار 2011